

Introduction

- In this topic, we will
 - Discuss converting systems of higher-order initial-value problems into a system of 1st-order initial-value problems
 - Look at an example

We will show this by example:

$$y^{(2)}(t) + 2y^{(1)}(t) + y(t) + z(t) = \sin(t)$$
$$z^{(2)}(t) + z^{(1)}(t) + z(t) + y(t) = \cos(t)$$

– This requires four initial conditions:

$$y(t_0) = y_0$$

$$y^{(1)}(t_0) = y_0^{(1)}$$

$$z(t_0) = z_0$$

$$z^{(1)}(t_0) = z_0^{(1)}$$

We will represent:

$$y(t) = w_0(t)$$
$$y^{(1)}(t) = w_1(t)$$
$$z(t) = w_2(t)$$
$$z^{(1)}(t) = w_3(t)$$

— We can immediately translate the initial conditions:

$$y(t_0) = y_0$$
 $w_0(t_0) = y_0$
 $y^{(1)}(t_0) = y_0^{(1)}$ $w_1(t_0) = y_0^{(1)}$
 $z(t_0) = z_0$ $w_2(t_0) = z_0$
 $z^{(1)}(t_0) = z_0^{(1)}$ $w_3(t_0) = z_0^{(1)}$

We also immediately note that:

$$w_0^{(1)}(t) = y^{(1)}(t) = w_1(t)$$

$$w_2^{(1)}(t) = z^{(1)}(t) = w_3(t)$$

• That leaves us with determining $w_1^{(1)}(t), w_3^{(1)}(t)$

$$y^{(2)}(t) = \sin(t) - 2y^{(1)}(t) - y(t) - z(t)$$

$$z^{(2)}(t) = \cos(t) - z^{(1)}(t) - z(t) - y(t)$$

$$w_1^{(1)}(t) = \sin(t) - 2w_1(t) - w_0(t) - w_2(t)$$

$$w_3^{(1)}(t) = \cos(t) - w_3(t) - w_2(t) - w_0(t)$$

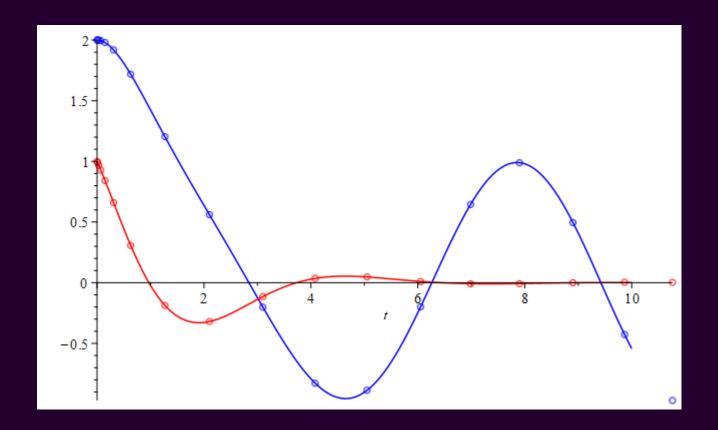
Thus, we have:

$$\mathbf{w}^{(1)}(t) = \begin{pmatrix} w_1(t) \\ \sin(t) - 2w_1(t) - w_0(t) - w_2(t) \\ w_3(t) \\ \cos(t) - w_3(t) - w_2(t) - w_0(t) \end{pmatrix} \qquad \mathbf{w}(t_0) = \begin{pmatrix} y_0 \\ y_0^{(1)} \\ z_0 \\ z_0^{(1)} \end{pmatrix}$$

We can write this as a function:

```
vec<4> f( double t, vec<4> w ) {
    return vec<4>{
        w[1],
        std::sin(t) - 2.0*w[1] - w[0] - w[2],
        w[3],
        std::cos(t) - w[3] - w[2] - w[0]
    };
```


Plotting the actual solution versus the



		$w_0(t) = y(t)$	$w_1(t) = y^{(1)}(t)$	$w_2(t) = z(t)$	$w_3(t) = z^{(1)}(t)$
	0	< 1	-1	2	0 >
	0.01	< 0.9899507	-1.0098008	1.9999005	-0.0198502>
	0.03	< 0.9695678	-1.0282224	1.9991135	-0.0586547>
	0.07	< 0.9277737	-1.0604838	1.9952704	-0.1327130>
	0.15	< 0.8408958	-1.1077690	1.9791628	-0.2669310>
	0.31	< 0.6599369	-1.1418081	1.9182831	-0.4828253>
	0.63	< 0.3072558	-1.0298129	1.7176558	-0.7357848>
	1.27	<-0.1870949	-0.4857930	1.2033141	-0.8119151>
	2.1015668	<-0.3197583	0.0966596	0.5615785	-0.7482154>
L8	3.1015668	<-0.1142981	0.2232183	-0.2015183	-0.7630420>
	4.0791478	< 0.0363239	0.0711120	-0.8282826	-0.4258318>
	5.0504978	< 0.0478470	-0.0300383	-0.8858265	0.3398003>
	6.0504978	< 0.0094451	-0.0317667	-0.1990892	0.9286665>
	6.9858539	<-0.0096116	-0.0052132	0.6446146	0.7403237>
	7.9002755	<-0.0081134	0.0075244	0.9883434	-0.0443953>
	8.9002755	<-0.0001790	0.0047968	0.4956264	-0.8559776>
	9.8671404	< 0.0035653	-0.0015659	-0.4269945	-0.8992590>
	10.762308	< 0.0023111	-0.0031120	-0.9703157	-0.2322476>

Other systems higher-order initial-value problems

Thus, if we had four coupled ODEs:

$$u_1^{(4)}(t) = f_1(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_2^{(2)}(t) = f_2(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_3^{(2)}(t) = f_3(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_4^{(3)}(t) = f_4(t, u_1(t), \dots, u_4^{(2)}(t))$$

- This requires eleven initial conditions
- This would require us to define a system of eleven 1storder initial-value problems

Other systems higher-order initial-value problems

Thus we would reformulate as follows:

$$u_1^{(4)}(t) = f_1(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_2^{(2)}(t) = f_2(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_3^{(2)}(t) = f_3(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$u_4^{(3)}(t) = f_4(t, u_1(t), \dots, u_4^{(2)}(t))$$

$$w_0^{(1)}(t) = w_1(t)$$

$$w_1^{(1)}(t) = w_2(t)$$

$$w_2^{(1)}(t) = w_3(t)$$

$$w_3^{(1)}(t) = f_1(t, \mathbf{w}(t))$$

$$w_4^{(1)}(t) = w_5(t)$$

$$w_5^{(1)}(t) = f_2(t, \mathbf{w}(t))$$

$$w_6^{(1)}(t) = w_7(t)$$

$$w_7^{(1)}(t) = f_3(t, \mathbf{w}(t))$$

$$w_8^{(1)}(t) = w_9(t)$$

$$w_9^{(1)}(t) = w_{10}(t)$$

$$w_{10}^{(1)}(t) = f_4(t, \mathbf{w}(t))$$

Summary

- Following this topic, you now
 - Understand how to convert a system of higher-order initial-value problems into a system of 1st-order initial-value problems
 - Have seen an example and its solution

References

[1] https://en.wikipedia.org/wiki/Initial_value_problem

Acknowledgments

None so far.

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc. Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.